Turns out, magnetic surgical cement heals spinal fractures and provides the required drug delivery.
Patients with spinal fractures, caused by tumours or osteoporosis, usually undergo a procedure called kyphoplasty, where the fracture is filled with surgical cement.
While kyphoplasty can stabilize the bone, cancer patients are still often left with spinal column tumours that are very hard to reach with conventional chemotherapy, which has to cross the blood-brain barrier when delivered intravenously.
Researchers at the University of Illinois at Chicago found that by adding magnetic particles to the surgical cement used to heal spinal fractures, they could guide magnetic nanoparticles directly to lesions near the fractures.
Nanoparticles bound to various drugs have been used to target drugs to specific locations or types of cells in the body. Most commonly, this is achieved by binding a minute amount of drug to the nanoparticle, which is designed to also bind to a specific type of cell, such as a cancer cell.
Also Read
Co-lead author of the paper, Steven Denyer said, "By modifying the kyphoplasty bone cement, we can both stabilize the spinal column and provide a targeted drug delivery system. This is a very promising technology as it has the potential to become a surgical option for patients with primary spinal column tumours or tumours that metastasize to the spinal column."
Using a pig model to study the magnetically-guided drug delivery system, Denyer and colleagues were successfully able to steer magnetic nanoparticles to the magnetic cement in the animal's spinal vertebrae.
Another co-lead author of the paper, Abhiraj Bhimani said, "Our study provides an in vivo proof-of-concept that this novel drug delivery system can help treat underlying causes of spinal fractures in addition to providing structural support."
The full findings are present in the journal- PLOS ONE.
Disclaimer: No Business Standard Journalist was involved in creation of this content