Researchers have developed a method to generate human induced pluripotent stem cells (hiPSCs) from a single drop of finger-pricked blood.
The method also enables donors to collect their own blood samples, which they can then send to a laboratory for further processing.
The easy access to blood samples using the new technique could potentially boost the recruitment of greater numbers and diversities of donors, and could lead to the establishment of large-scale hiPSC banks.
By genetic reprogramming, matured human cells, usually blood cells, can be transformed into hiPSCs.
Current sample collection for reprogramming into hiPSCs include invasive measures such as collecting cells from the bone marrow or skin, which may put off many potential donors.
Although hiPSCs may also be generated from blood cells, large quantities of blood are usually required. Scientists at Institute of Molecular and Cell Biology (IMCB) showed for the first time that single-drop volumes of blood are sufficient for reprogramming into hiPSCs.
More From This Section
The finger-prick technique is the world's first to use only a drop of finger-pricked blood to yield hiPSCs with high efficiency.
The accessibility of the new technique is further enhanced with a DIY sample collection approach. Donors may collect their own finger-pricked blood, which they can then store and send it to a laboratory for reprogramming. The blood sample remains stable for 48 hours and can be expanded for 12 days in culture, which therefore extends the finger-prick technique to a wide range of geographical regions for recruitment of donors with varied ethnicities, genotypes and diseases.
The paper has been published online in the Stem Cell Translational Medicine journal.