Researchers have built the smallest, fastest and longest-running tiny synthetic motor to date.
The team's nanomotor is an important step toward developing miniature machines that could one day move through the body to administer insulin for diabetics when needed, or target and treat cancer cells without harming good cells.
With the goal of powering these yet-to-be invented devices, UT Austin engineers focused on building a reliable, ultra-high-speed nanomotor that can convert electrical energy into mechanical motion on a scale 500 times smaller than a grain of salt.
Mechanical engineering assistant professor Donglei "Emma" Fan led a team of researchers in the successful design, assembly and testing of a high-performing nanomotor in a nonbiological setting.
The team's three-part nanomotor can rapidly mix and pump biochemicals and move through liquids, which is important for future applications.
With all its dimensions under 1 micrometer in size, the nanomotor could fit inside a human cell and is capable of rotating for 15 continuous hours at a speed of 18,000 RPMs, the speed of a motor in a jet airplane engine. Comparable nanomotors run significantly more slowly, from 14 RPMs to 500 RPMs, and have only rotated for a few seconds up to a few minutes.
More From This Section
To test its ability to release drugs, the researchers coated the nanomotor's surface with biochemicals and initiated spinning. They found that the faster the nanomotor rotated, the faster it released the drugs.
The study has been published in the journal Nature Communications.