The dragonflies can screen out useless visual information to focus on a target, a process called selective attention, that could be used as a model system for robotic vision.
The discovery is the first evidence that an invertebrate animal has brain cells for selective attention, which has so far only been demonstrated in primates.
Dr Steven Wiederman and Associate Professor David O'Carroll from the University of Adelaide's Centre for Neuroscience Research have been studying insect vision for many years.
Using a tiny glass probe with a tip that is only 60 nanometers wide - 1500 times smaller than the width of a human hair - the researchers have discovered neuron activity in the dragonfly's brain that enables this selective attention.
They found that when presented with more than one visual target, the dragonfly brain cell 'locks on' to one target and behaves as if the other targets don't exist.
"Selective attention is fundamental to humans' ability to select and respond to one sensory stimulus in the presence of distractions," Wiederman said in a statement.
More From This Section
"Imagine a tennis player having to pick out a small ball from the crowd when it's travelling at almost 200kms an hour - you need selective attention in order to hit that ball back into play.
"Precisely how this works in biological brains remains poorly understood, and this has been a hot topic in neuroscience in recent years," he said.
O'Carroll says this brain activity makes the dragonfly a more efficient and effective predator.
"What's exciting for us is that this is the first direct demonstration of something akin to selective attention in humans shown at the single neuron level in an invertebrate," said O'Carroll.
"Recent studies reveal similar mechanisms at work in the primate brain, but you might expect it there. We weren't expecting to find something so sophisticated in lowly insects from a group that's been around for 325 million years.