A new study by scientists on NASA's Cassini mission found that blocks of hydrocarbon ice might decorate the surface of existing lakes and seas of liquid hydrocarbon on Titan.
"One of the most intriguing questions about these lakes and seas is whether they might host an exotic form of life," said Jonathan Lunine of Cornell University, co-author of the study.
"And the formation of floating hydrocarbon ice will provide an opportunity for interesting chemistry along the boundary between liquid and solid, a boundary that may have been important in the origin of terrestrial life," Lunine said in a statement.
Titan is the only other body besides Earth in our solar system with stable bodies of liquid on its surface. While our planet's cycle of precipitation and evaporation involves water, Titan's cycle involves hydrocarbons like ethane and methane.
Ethane and methane are organic molecules, which scientists think can be building blocks for the more complex chemistry from which life arose.
Up to this point, Cassini scientists assumed that Titan lakes would not have floating ice, because solid methane is denser than liquid methane and would sink.
More From This Section
But the new model considers the interaction between the lakes and the atmosphere, resulting in different mixtures of compositions, pockets of nitrogen gas, and changes in temperature.
The result, scientists found, is that winter ice will float in Titan's methane-and-ethane-rich lakes and seas if the temperature is below the freezing point of methane - minus 297 degrees Fahrenheit (90.4 kelvins).
The scientists realised all the varieties of ice they considered would float if they were composed of at least 5 per cent "air," which is an average composition for young sea ice on Earth.
If the temperature drops by just a few degrees, the ice will sink because of the relative proportions of nitrogen gas in the liquid versus the solid.
Temperatures close to the freezing point of methane could lead to both floating and sinking ice - that is, a hydrocarbon ice crust above the liquid and blocks of hydrocarbon ice on the bottom of the lake bed.
Scientists haven't entirely figured out what colour the ice would be, though they suspect it would be colourless, as it is on Earth, tinted reddish-brown from Titan's atmosphere.
"We now know it's possible to get methane-and-ethane-rich ice freezing over on Titan in thin blocks that congeal together as it gets colder - similar to what we see with Arctic sea ice at the onset of winter," said Jason Hofgartner, first author on the paper.