Present-day life on Earth is premature from a cosmic perspective and chances of finding life on other planets are 1,000 times higher in the distant future than now, scientists say.
The universe is 13.8 billion years old, while our planet formed just 4.5 billion years ago. Some scientists think this time gap means that life on other planets could be billions of years older than ours.
However, a new study by scientists at Harvard-Smithsonian Centre for Astrophysics in the US and University of Oxford in the UK suggests that present-day life is actually premature from a cosmic perspective.
More From This Section
Life as we know it first became possible about 30 million years after the Big Bang, when the first stars seeded the cosmos with the necessary elements like carbon and oxygen.
Life will end 10 trillion years from now when the last stars fade away and die, researchers said.
Researchers considered the relative likelihood of life between those two boundaries.
The dominant factor proved to be the lifetimes of stars. The higher a star's mass, the shorter its lifetime. Stars larger than about three times the Sun's mass will expire before life has a chance to evolve.
Conversely, the smallest stars weigh less than 10 per cent as much as the Sun. They will glow for 10 trillion years, giving life ample time to emerge on any planets they host. As a result, the probability of life grows over time.
In fact, chances of life are 1,000 times higher in the distant future than now.
"So then you may ask, why aren't we living in the future next to a low-mass star?" said Loeb.
"One possibility is we're premature. Another possibility is that the environment around a low-mass star is hazardous to life," he said.
Although low-mass, red dwarf stars live for a long time, they also pose unique threats. In their youth they emit strong flares and ultraviolet radiation that could strip the atmosphere from any rocky world in the habitable zone.
To determine which possibility is correct, Loeb recommends studying nearby red dwarf stars and their planets for signs of habitability.
The research is published in the Journal of Cosmology and Astroparticle Physics.