Scientists have for the first time properly observed a theoretical cousin of the Higgs boson, one that inspired the decades-long hunt for the elusive particle.
The Higgs field is credited with giving other particles mass by slowing their movement through the vacuum of space.
The particle, which was first proposed in the 1960s, finally appeared at the Large Hadron Collider at CERN near Geneva, in 2012.
More From This Section
Near minus 273 degrees Celsius, vibrations are set up in the superconducting material that slow down pairs of photons travelling through, making light act as though it has mass.
This effect is closely linked to the idea of the Higgs - "the mother of it actually," said Raymond Volkas at the University of Melbourne in Australia.
Those vibrations are the mathematical equivalent of Higgs particles, said Ryo Shimano at the University of Tokyo, who led the team that made the new discovery.
The superconductor version explains the virtual mass of light in a superconductor, while the particle physics Higgs field explains the mass of W and Z bosons in the vacuum.
Physicists had expected the Higgs-like effect to appear in all superconductors because it is also responsible for their characteristic property - zero electrical resistance.
However, it had only been seen before by imposing a different kind of vibration on the material, the report said.
Shimano and colleagues violently shook the superconductor with a very brief pulse of light to observe it in a superconductor in its normal state.
It is similar to how particle physicists create the real Higgs boson with energetic particle collisions, Shimano said.