A thick sheet of ice once covering Mars could explain the formation of over 600 mysterious double-layered craters on the surface of the Red planet, geologists say.
The Martian surface was covered with a thick sheet of ice at impact. Ejected material would later slide down steep crater sides and across the ice, forming a second layer, researchers said.
Double-layered ejecta craters or DLEs, like other craters, are surrounded by debris excavated by an impactor. What makes DLEs different is that the debris forms two distinct layers - a large outer layer with a smaller inner layer sitting on top.
More From This Section
A new study by Brown University graduate student David Kutai Weiss and James W Head, professor of geological science, suggests that DLEs are the result of impacts onto a surface that was covered by a layer of glacial ice tens of meters thick.
"Recent discoveries by planetary geoscientists at Brown and elsewhere have shown that the climate of Mars has varied in the past," Head said.
"During these times, ice from the polar caps is redistributed into the mid-latitudes of Mars as a layer about 50 meters thick, in the same place that we see that the DLEs have formed. This made us think that this ice layer could be part of the explanation for the formation of the unusual DLE second layer," Head said.
In the scenario Weiss and Head lay out, the impact blasts through the ice layer, spitting rock and other ejecta out onto the surrounding ice. But because that ejected material sits on slippery ice, it doesn't all stay put.
Weiss and Head believe the layering occurs when material near the top of an upraised crater rim slides down the slippery ice and overtops material on the lower slopes. That landslide, enabled by steep slopes and a slick ice layer, creates the DLEs' telltale two-layered appearance.
"I think for the first time since DLEs were discovered in the 1970s we have a model for their formation that appears to be consistent with a very wide range of known data," Weiss said.
The study was published in the journal Geophysical Research Letters.