Business Standard

New metal composite may lead to unsinkable boats

Image

Press Trust of India New York
Boats of the future may not sink despite damage to their structure, thanks to a new light weight composite material developed by researchers, including one of Indian-origin.

Researchers demonstrated the new metal matrix composite that is so light that it can float on water.

A boat made of such lightweight composites will not sink despite damage to its structure, researchers said.

The new material developed by researchers from Deep Springs Technology (DST) and the New York University Polytechnic School of Engineering promises to improve automotive fuel economy because it combines light weight with heat resistance.

Although syntactic foams have been around for many years, this is the first development of a lightweight metal matrix syntactic foam.
 

Their magnesium alloy matrix composite is reinforced with silicon carbide hollow particles and has a density of only 0.92 grams per cubic centimetre compared to 1.0 g/cc of water.

Not only does it have a density lower than that of water, it is strong enough to withstand the rigorous conditions faced in the marine environment.

Significant efforts in recent years have focused on developing lightweight polymer matrix composites to replace heavier metal-based components in automobiles and marine vessels.

The technology for the new composite is very close to maturation and could be put into prototypes for testing within three years.

Amphibious vehicles such as the Ultra Heavy-lift Amphibious Connector (UHAC) being developed by the US Marine Corps can especially benefit from the light weight and high buoyancy offered by the new syntactic foams, researchers said.

"This new development of very light metal matrix composites can swing the pendulum back in favour of metallic materials," said Nikhil Gupta, an NYU School of Engineering professor in the Department of Mechanical and Aerospace Engineering and the study's co-author.

"The ability of metals to withstand higher temperatures can be a huge advantage for these composites in engine and exhaust components, quite apart from structural parts," said Gupta.

The syntactic foam captures the lightness of foams, but adds substantial strength.

The secret of this syntactic foam starts with a matrix made of a magnesium alloy, which is then turned into foam by adding strong, lightweight silicon carbide hollow spheres.

A single sphere's shell can withstand pressure of over 25,000 pounds per square inch (PSI) before it ruptures - one hundred times the maximum pressure in a fire hose.

The hollow particles also offer impact protection to the syntactic foam because each shell acts like an energy absorber during its fracture.

The composite can be customised for density and other properties by adding more or fewer shells into the metal matrix to fit the requirements of the application.

Don't miss the most important news and views of the day. Get them on our Telegram channel

First Published: May 13 2015 | 5:57 PM IST

Explore News