Researchers have developed a mouth guard that can monitor health markers in saliva and transmit the information wirelessly to a smartphone.
The technology, which is at a proof-of-concept stage, could be used to monitor patients continuously without invasive procedures, as well as to monitor athletes' performance or stress levels in soldiers and pilots, researchers said.
Engineers at the University of California, San Diego, developed the mouth guard that can monitor health markers, such as lactate, cortisol and uric acid, in saliva.
More From This Section
"The ability to monitor continuously and non-invasively saliva biomarkers holds considerable promise for many biomedical and fitness applications," said nanoengineering professor Joseph Wang.
In the study, researchers showed that the mouth guard sensor could offer an easy and reliable way to monitor uric acid levels. The mouth guard has been tested with human saliva but has not been tested in a person's mouth.
Researchers collected saliva samples from healthy volunteers and spread them on the sensor, which produced readings in a normal range.
Next, they collected saliva from a patient who suffers from hyperuricemia, a condition characterised by an excess of uric acid in the blood. The sensor detected more than four times as much uric acid in the patient's saliva than in the healthy volunteers.
The patient also took Allopurinol, which had been prescribed by a physician to treat the condition. Researchers were able to document a drop in the levels of uric acid over four or five days as the medication took effect.
To develop the device, Wang's team created a screen-printed sensor using silver, Prussian blue ink and uricase, an enzyme that reacts with uric acid.
Because saliva is extremely complex and contains many different biomarkers, researchers needed to make sure that the sensors only reacted with the uric acid. Nanoengineers set up the chemical equivalent of a two-step authentication system.
The first step is a series of chemical keyholes, which ensures that only the smallest biochemicals get inside the sensor. The second step is a layer of uricase trapped in polymers, which reacts selectively with uric acid.
The reaction between acid and enzyme generates hydrogen peroxide, which is detected by the Prussian blue ink. That information is then transmitted to an electronic board as electrical signals via metallic strips that are part of the sensor.
The electronic board, developed by Mercier's team, uses small chips that sense the output of the sensors, digitises this output and then wirelessly transmits data to a smartphone, tablet or laptop.
The next step is to embed all the electronics inside the mouth guard so that it can actually be worn.