Scientists have discovered an antibody-generating protein that can prevent malaria parasites from multiplying inside the body, paving the way for an effective vaccine for the deadly disease.
The antigen, known as PfSEA-1, was associated with reduced parasite levels among children and adults in malaria-endemic areas, researchers found.
Mice exposed to PfSEA-1 in an investigational vaccine also experienced lower malaria parasite levels. The discovery of PfSEA-1 could be a critical addition to the limited pool of antigens currently used in candidate malaria vaccines.
Also Read
Researchers said an estimated 627,000 people die from malaria each year according to the World Health Organisation, with most deaths from the mosquito-borne parasitic disease occurring among young children living in sub-Saharan Africa.
People who live in areas where malaria is common frequently develop protective immune system responses that can limit malaria parasite levels in the blood and prevent the high fever and illness associated with malaria infection.
Using plasma samples from 2-year-old Tanzanian children who were either resistant or susceptible to malaria infection, researchers from the National Institute of Allergy and Infectious Diseases (NIAID) in US performed gene-screening experiments and a series of laboratory tests that identified PfSEA-1.
Multiple tests confirmed that antibodies to PfSEA-1 halted malaria infection at the point when the parasite leaves one red blood cell to invade a new one.
This stage offers a unique target for future malaria vaccines as previous vaccine candidates have tried to block the stage when parasites enter red blood cells, according to the research authors.
Scientists then vaccinated five groups of mice with the novel antigen to evaluate its effects after the mice were exposed to malaria. In all groups, the vaccinated mice had lower levels of malaria parasites and survived longer than the unvaccinated mice.
Researchers measured antibody levels in plasma samples from 453 Tanzanian children from the previous cohort and discovered that no cases of severe malaria occurred during periods when the children had detectable antibodies to PfSEA-1.
Further, the scientists evaluated plasma samples from 138 males ages 12-35 years living in a malaria-endemic area of Kenya and found that individuals with detectable antibodies to PfSEA-1 had 50 per cent lower parasite densities compared to individuals with no detectable antibodies.
Together, these findings support PfSEA-1 as a potential vaccine candidate that could work alone or together with other vaccines targeting different stages of malaria infection, the researchers said.
The findings appear in the journal Science.