Scientists are developing gen-next batteries that capture the energy of our everyday movements, such as walking, to convert it into electricity to power cellphones and other devices.
Researchers have for many years attempted to harvest energy from our everyday movements to allow us to trickle charge electronic devices while we are walking without the need for expensive and cumbersome gadgets such as solar panels or hand-cranked chargers.
Lightweight devices are limited in the voltage that they can produce from our low-frequency movements to a few millivolts.
More From This Section
The cantilever is attached to a conducting metal coil with a strong neodymium, NdFeB, magnet inside, all enclosed in a polymer casing. When a conductor moves through a magnetic field a current is induced in the conductor.
This has been the basis of electrical generation in power stations, dynamos and other such systems since the discovery of the effect in the nineteenth century.
Using a powerful magnet and a conducting coil with lots of turns means a higher voltage can be produced.
In order to extract the electricity generated, there is a need to include special circuitry that takes only the positive voltage and passes it along to a rechargeable battery.
The development of kinetic chargers has been stymied by current diode technology that requires a voltage of around 200 millivolts to drive a current.
Song and Aw have now side-stepped this obstacle by using a tiny electrical transformer and a capacitor, which acts like a microelectronic battery.
Their charger weighing just a few grammes oscillates, wiggling the coil back and forth through the neodymium magnetic field and produces 40 millivolts.
The transformer captures this voltage and stores up the charge in the capacitor in fractions of a second. Once the capacitor is full it discharges sending a positive pulse to the rechargeable battery, thus acting as its own rectifier.
The team concedes that this is just the first step towards a viable trickle charger that could be used to keep medical devices, monitors and sensors trickle charged while a person goes about their normal lives without the need for access to a power supply.
The study was published in the International Journal Biomechatronics and Biomedical Robotics.