Business Standard

Stubborn GE scientist creates new fuel-saving material

Image

AP Niskayuna (US)
For nearly three decades Indian-origin Krishan Luthra stubbornly laboured away in a General Electric research lab on a long-shot effort to cook up a new type of ceramic that few consumers will ever see or use.

Now this obscure material, which is lightweight, strong and can handle extreme temperatures, is being built into the bellies of jet engines and promises to save billions of gallons of fuel in the coming decades by reducing weight and allowing engines to run hotter.

It has helped GE win jet engine orders worth USD 100 billion so far from airlines looking to shave their huge fuel bills. In the future it is expected to be used in power plants and other equipment.
 

"It's a dream material," says Luthra, who has spent most of his career dreaming about it.

The material is a type of ceramic that is hard and can handle high heat, like the ceramics people have been making for 25,000 years. But this ceramic is a complex composite that is also very light, and tough like a metal. No one wants the aircraft engine that is holding them 35,000 feet above the earth to shatter like a vase.

Success came only at the end of a tortured path of fluctuating research funding and disappointments that at times shook Luthra's hopes.

"There were times where I wasn't sure it was going to work," Luthra admits. "But I guess I was too stubborn. I thought it was the right path."

GE is one of the few big companies that continue to operate large industrial labs that house thousands of scientists who work on basic research and long-shot projects that, sometimes, result in inventions like Luthra's. The Department of Energy helped with some early funding, hoping the materials could be used in power plants.

NASA wanted to use them in supersonic aircraft. The US military hoped they could be used in a new fighter jet. None of the efforts fully panned out, but they helped advance the research far enough for GE's Aviation division to fund more research and development, and to finally commercialise it.

The metal "super-alloys" that now line the hottest parts of jet engines are heavy, about 70 percent as dense as lead. And engineers can't increase combustion temperatures because the alloys would melt. Already, today's engines employ elaborate cooling mechanisms that divert air for cooling that otherwise would be used to power the plane.

Ceramic matrix composites can withstand temperatures 20 percent higher than these metals, and they are one-third the weight.

"For what it does, nothing can compare to it," says Gregory Morscher, a ceramic composites expert and mechanical engineering professor at the University of Akron.

The theoretical qualities of these ceramic composites have long been well known, but Luthra wanted to make them a reality, and put them to use.

Don't miss the most important news and views of the day. Get them on our Telegram channel

First Published: May 15 2015 | 1:02 AM IST

Explore News