Quickly clearing out defective proteins in the brain may prevent loss of nuerons in Huntington's disease, a genetic brain disorder that leads to uncontrolled movements and mental decline, scientists say.
The speed at which damaged proteins are cleared from neurons may affect cell survival and may explain why some cells are targeted for death in neurodegenerative disorders, researchers said.
In Huntington's disease and many other neurodegenerative disorders, proteins that are misfolded (have abnormal shapes), accumulate inside and around neurons and are thought to damage and kill nearby brain cells.
More From This Section
In the study, Andrey S Tsvetkov and his colleagues from the University of California, San Francisco (UCSF) and Duke University, Durham, showed that differences in the rate of proteostasis may be the clue to understanding why certain nerve cells die in Huntington's.
To measure how quickly proteins are cleared away from cells, the researchers developed a new technique called optical pulse-labelling, allowing them to follow specific proteins in individual living cells.
To test the technique, they grew brain cells in a dish and turned on Dendra2, a photoswitchable protein that glows from green to red after being hit by a specific type of light.
In this way, the researchers could track the lifetime of newly produced Dendra2 (which glows green) and older, photoswitched Dendra2 (which glows red) until the protein was cleared away from the cell.
The researchers followed Dendra2 in a set of striatal neurons, which they obtained from rats. The striatum (where striatal neurons are located) is a brain region involved in a number of brain functions including planning movements and is most heavily affected in Huntington's disease.
They discovered that the mean lifetime of the protein (how long it remained in the cell) varied three- to fourfold, suggesting that rates of proteostasis were different among individual neurons.
Then, the researchers investigated how cells deal with different forms of huntingtin, the protein involved in Huntington's.
As predicted, in their experiments, the mutant form of huntingtin caused more rat cells to die than did the normal form of the protein.
The researchers found that shorter mean lifetimes of mutant huntingtin were linked to longer neuronal survival.
A shorter mean lifetime indicates that a protein does not remain in the cell for a long time, and that proteostasis is working effectively to clear it away. This suggests that improving proteostasis in Huntington's brains may improve neuronal survival, the study found.